Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials

Konstantinos Z Vardakas, Georgios L Voulgaris, Athanasios Maliaros, George Samonis, Matthew E Falagas

Summary

Background The findings of randomised controlled trials (RCT), observational studies, and meta-analyses vary regarding the effectiveness of prolonged β-lactam infusion. We aimed to identify the effectiveness of prolonged versus short-term infusion of antipseudomonal β-lactams in patients with sepsis.

Methods We did a systematic review and meta-analysis to compare prolonged versus short-term intravenous infusion of antipseudomonal β-lactams in patients with sepsis. Two authors independently searched PubMed, Scopus, and the Cochrane Library of clinical trials until November, 2016, without date or language restrictions. Any RCT comparing mortality or clinical efficacy of prolonged (continuous or ≥3 h) versus short-term (≤60 min) infusion of antipseudomonal β-lactams for the treatment of patients with sepsis was eligible. Studies were excluded if they were not RCTs, the antibiotics in the two arms were not the same, neither mortality nor clinical efficacy was reported, only pharmacokinetic or pharmacodynamic outcomes were reported, or if ten or fewer patients were enrolled or randomised. Data were extracted in prespecified forms and we then did a meta-analysis using a Mantel-Haenszel random-effects model. The primary outcome was all-cause mortality at any timepoint. This meta-analysis is registered with the PROSPERO database, number CRD42016051678, and is reported according to PRISMA guidelines.

Findings 2196 articles were identified and screened, and 22 studies (1876 patients) were included in the meta-analysis. According to the Grading of Recommendations Assessment, Development, and Evaluation tool, the quality of evidence for mortality was high. Carbapenems, penicillins, and cephalosporins were studied. Patients with variable age, Acute Physiology and Chronic Health Evaluation (APACHE) II score, severity of sepsis and renal function were enrolled. According to the Grading of Recommendations Assessment, Development, and Evaluation tool, the quality of evidence was high. Heterogeneity was not observed (p=0.93, I²=0%). The funnel plot and the Egger’s test (p=0.44) showed no evidence of publication bias.

Interpretation Prolonged infusion of antipseudomonal β-lactams for the treatment of patients with sepsis was associated with significantly lower mortality than short-term infusion. Further studies in specific subgroups of patients according to age, sepsis severity, degree of renal dysfunction, and immunocompetence are warranted.

Funding None.

Introduction Despite the availability of multiple antibiotic options, bacterial infections continue to cause substantial morbidity and mortality.4–6 Changes in both bacterial (mutations, development of resistance) and host factors (older age, immunosuppression, in dwelling devices, operations) created the need for new antibiotics, revival of neglected old antibiotics, and optimised use of the currently available ones.4,5 Furthermore, in sepsis the volume of distribution (lower albumin levels, increased capillary permeability, and higher extracellular volume) and renal clearance increases resulting in lower antibiotic concentrations.4

Most of the new β-lactams display a similar mechanism of action to their predecessors. Therefore, potential optimisation of β-lactams plasma concentrations could improve their clinical effectiveness, which depends on the percentage of time their free plasma concentration is higher than the pathogen’s minimum inhibitory concentration (%T>MIC); the higher this percentage, the higher the effectiveness.8 Additionally, effectiveness increases when the β-lactam plasma concentration at steady state is more than four times the pathogen’s MIC.8 In patients with normal renal function, the fluctuation of β-lactam plasma concentration improves when prolonged infusion compared with short-term infusion is used.9

Preliminary data from small randomised controlled trials (RCTs) and retrospective studies showed that the outcomes depend on the β-lactam class, the quality of the included studies and the infection being studied. Thus, meta-analyses of cephalosporin antibiotics showed no difference in patient outcomes, while improvement in morbidity and mortality was seen in patients treated with carbapenems or piperacillin with tazobactam;10–11 however, subsequent RCTs showed no difference or minor improvements (in terms of clinical cure or improvement but not mortality) in patients treated primarily with continuous meropenem or piperacillin with tazobactam.12–16 Our primary aim of doing this meta-analysis was to assess the effect of prolonged infusion of antipseudomonal β-lactams for patients with sepsis.
antipseudomonal β-lactams (carbapenems, penicillins, cephalosporins, and monobactams) on mortality of patients with sepsis compared with short-term administration (≤60 min). In the Cochrane Library of clinical trials was updated using the same search strategy on April 2017; no additional studies were retrieved. Any RCT studying the comparative clinical efficacy of prolonged (continuous or ≥3 h) versus short-term (≤60 min) infusion of antipseudomonal β-lactams for the treatment of patients with sepsis (community-associated or nosocomial) was considered eligible for inclusion regardless of the primary scope or aim of the trial. We did a meta-analysis using a random effects model. According to GRADE, the quality of evidence for mortality was high. 17 studies (1597 patients) provided data on mortality at different end-points. Overall, prolonged infusion of antipseudomonal β-lactams was associated with lower all-cause mortality than short-term infusion (risk ratio 0.70, 95% CI 0.56–0.87). Heterogeneity was not observed (p=0.93, I²=0%). The funnel plot and the Egger’s test showed no evidence of publication bias.

Methods

Search study and selection criteria

We did a systematic review and meta-analysis to compare prolonged versus short-term intravenous infusion of antipseudomonal β-lactams in patients with sepsis. Two reviewers independently searched PubMed, Scopus, and Cochrane Library, until November, 2016. We searched PubMed using the following terms without data or language restrictions: (“carbapenem” OR “meropenem” OR “imipenem” OR “doripenem” OR “piperacillin” OR “ticarcillin” OR “cephalosporins” OR “cefepime” OR “ceftazidime” OR “cefotaxime” OR “cefoxazone” OR ““monobactam” OR “aztreonam”) AND (“extended” OR “prolonged” OR “continuous” OR “discontinuous” OR “intermittent” OR “short” OR “bolus”) AND (“duration” OR “infusion” OR “administration” OR “interval” OR “dosing”). We did not search abstracts presented in international conferences. We manually searched the reference lists of selected articles and relevant reviews. Any RCT studying the comparative effectiveness and safety of prolonged (lasting ≥3 h or 24 h continuous infusion) versus short-term (bolus or up to 60 min intermittent infusion) administration of any antipseudomonal β-lactam for the treatment of adult patients with sepsis was considered eligible for inclusion regardless of the primary scope or aim of the trial. Studies evaluating patients with community-acquired, nosocomial, or healthcare-associated infections were eligible. Studies were excluded if they were not RCTs, the antibiotics in the two arms were not the same, neither mortality nor clinical efficacy was reported, only pharmacokinetic or pharmacodynamic outcomes were reported, or if ten or fewer patients were enrolled or randomised. Cross-over and cluster RCTs were also ineligible.

Data analysis

Two authors (KZV and GLV) independently extracted data in prespecified forms. Additional data were retrieved by the authors of studies focusing on clinical outcomes via electronic communications. Authors contacted in our previous meta-analysis were not contacted again. The primary outcome was all-cause mortality at any timepoint. When mortality was provided for both the intention-to-treat (ITT) and the per-protocol populations, we used the ITT population. Only if ITT data was not available did we include per-protocol data in the meta-analysis. If mortality evidence before this study

The plasma concentrations of β-lactams are more stable in patients with, primarily, normal renal function, when prolonged infusions are used compared with short-term infusions. Preliminary data from small randomised controlled trials (RCTs), retrospective studies, and meta-analyses have shown that patient outcomes (primarily mortality) depend on the β-lactam class, the quality of the included studies and the infection being studied. However, subsequent larger RCTs showed no significant difference in mortality with or without improvements in clinical or microbiological cure.

The primary objective of this meta-analysis was the effect of prolonged infusion of antipseudomonal β-lactams (carbapenems, penicillins, cephalosporins, and monobactams) on mortality of patients with sepsis compared with short-term administration (≤60 min). The search in PubMed, Scopus, and Cochrane Library of clinical trials was updated using the same search strategy on April 2017; no additional studies were retrieved. Any RCT studying the comparative clinical efficacy of prolonged (continuous or ≥3 h) versus short-term (≤60 min) infusion of antipseudomonal β-lactams for the treatment of patients with sepsis (community-associated or nosocomial) was considered eligible for inclusion regardless of the primary scope or aim of the trial. We did a meta-analysis using a random effects model. According to GRADE, the quality of evidence for mortality was high. 17 studies (1597 patients) provided data on mortality at different end-points. Overall, prolonged infusion of antipseudomonal β-lactams was associated with lower all-cause mortality than short-term infusion (risk ratio 0.70, 95% CI 0.56–0.87). Heterogeneity was not observed (p=0.93, I²=0%). The funnel plot and the Egger’s test showed no evidence of publication bias.

Added value of this study

Compared with other similar published works, this meta-analysis is not limited by the inclusion of non-randomised studies, inclusion of RCTs on concentration-dependent antibiotics or on antibiotics with narrower or different antibacterial spectrum, or the presence of inconsistency (heterogeneity was not observed in any of the subgroup or sensitivity analyses). To our knowledge, this meta-analysis of RCTs answering this question has the largest number of included patients from geographically diverse regions. Almost all subgroup and sensitivity analyses showed that prolonged infusion was associated with at least a trend towards lower all-cause mortality than short-term infusion when an adequate number of studies or patients was available.

Implications of all the available evidence

Prolonged infusion of β-lactams might benefit all hospitalised patients with sepsis; however, further studies in specific subgroups of patients according to age, sepsis severity, degree of renal dysfunction, susceptibility of bacteria to the administered antibiotics, and immunocompetence are warranted.
data 30 days from the beginning of treatment were available, this was included in the analysis. If not, any other mortality data was included. Secondary outcomes were clinical efficacy, adverse events, and emergence of resistance.

We used the Cochrane risk of bias tool for methodological assessment. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool was used for the overall assessment of the evidence in the systematic review. We did the meta-analysis using Review Manager for Windows (RevMan, version 5.3, Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration, 2008). We calculated pooled risk ratios (RR) and 95% CI using the Mantel-Haenszel random-effects model. “Studies were not included in the meta-analysis when there were no events in either arm. RevMan automatically checks for problematic zero counts and adds a fixed value (typically 0·5) to all cells of study results tables when no events occur.” Statistical heterogeneity among studies was assessed by χ² test (p<0·10 indicated significant heterogeneity) and I² (degree of heterogeneity). Subgroup analyses were prespecified according to β-lactam class, concomitant antibiotic treatment, bacterial species, renal function, mortality recording time, patients with bacteraemia, primary aim of the study (pharmacokinetic or clinically oriented), age, severity of disease (Acute Physiology and Chronic Health Evaluation [APACHE] II or similar), outcome reporting population (ITT or per-protocol), dose in the two arms (recommended and equal in the two arms, non-recommended but equal in the two arms, and different dose in the two arms), use of a loading dose, and after the exclusion of large studies. We did sensitivity analyses according to the risk of bias. We assessed publication bias by visual inspection of the funnel plot and Egger’s test. This meta-analysis is registered with the PROSPERO database, number CRD42016051678, and reported according to PRISMA guidelines.

Role of the funding source
There was no funding source for this study. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results
Of 2196 retrieved articles, 22 studies (1876 enrolled patients) were included in the meta-analysis (figure 1). Table 1 shows their characteristics. Six studies were designed to study pharmacokinetics and pharmacodynamics of prolonged versus short-term infusion but also provided data for clinical outcomes. Eight evaluated both pharmacokinetics and clinical outcomes and eight studied only clinical outcomes. Most studies were done in Asia-Pacific (ten), followed by Europe (nine), and America (three). Double-blinding was implemented in three RCTs, nine were open-label, and masking was not reported in ten. Allocation concealment was adequate in seven RCTs and in the remaining studies it was inadequate (two) or could not be assessed (13). Generation of random numbers was adequate in four, inadequate in six, and in 12 it was not reported. According to GRADE, the quality of evidence for mortality was high (the true effect lies close to that of the estimate of the effect, appendix p 1).

The data (for primary or secondary outcomes) were reported for the ITT population in 14 RCTs, for the per-protocol population in 12 RCTs, and in two RCTs this was not mentioned. The definition of sepsis varied in the individual RCTs: in four it was based on organ dysfunction and in three on systemic inflammatory response syndrome. Known allergies to the study antibiotics, pregnancy, and renal impairment (17 of 20 RCTs reporting exclusion criteria, from renal replacement therapy to creatinine clearance level of 60 mL/min) were the most common exclusion criteria. Septic shock, severe sepsis, impaired liver function, neutropenia, immunocompromise, infections due to strains resistant to study antibiotics, and progressive lethal disease were other less common exclusion criteria. Carbapenems were studied in nine RCTs, penicillins in nine RCTs, and cephalosporins in eight RCTs; monobactams were not evaluated in any RCT.

Figure 1: Study selection
RCT=randomised controlled trials.
<table>
<thead>
<tr>
<th>Study period; countries; setting</th>
<th>Exclusion criteria</th>
<th>Double blinding</th>
<th>Concealment of allocation</th>
<th>Generation of random numbers</th>
<th>Patients enrolled</th>
<th>Age (mean±SD); APACHE II (mean±SD); CrCl baseline (mean±SD)</th>
<th>Site or type of infection</th>
<th>n/N (%) documented infections</th>
<th>Antibiotic</th>
<th>Treatment prolonged</th>
<th>Treatment short-term</th>
<th>Additional antibiotics allowed n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbduAff for X (2016) (a)</td>
<td>April, 2013–July, 2014, Malaysia, ICU</td>
<td>Renal replacement therapy, impaired hepatic function, palliative treatment, imminent death</td>
<td>No (open)</td>
<td>Sealed envelope, adequate</td>
<td>Computer blocks, adequate</td>
<td>140</td>
<td>54 (42–63) vs 56 (41–68),* 21 (17–26) vs 21 (15–26),* 64 (43–98) vs 72 (41–122)*</td>
<td>Lung, intra-abdominal, skin and soft tissue, UTI, bacteraemia, CNS</td>
<td>NR</td>
<td>Meopenem, piperacillin/ tazobactam, ticarcillin/ clavulanate</td>
<td>Continuous LD 3 g/24 h, 1.5 g/24 h, 0.5 g/24 h</td>
<td>Yes; 4 (16%) vs 3 (12%)</td>
</tr>
<tr>
<td>Bao (2016) (a)</td>
<td>March–October 2012; China, ICU</td>
<td>Shock, CC, <40 mL/min, pregnancy, resistance to study antibiotics</td>
<td>No (open)</td>
<td>Sealed envelope, adequate</td>
<td>1, inadequate 52</td>
<td>69 (5 ± 7.8) vs 23 (2 ± 7.3) vs 23.7 ± 7.73 (47–251) vs 79 (3–278)*</td>
<td>Lung, intra-abdominal infection, UTI, skin and soft tissue</td>
<td>50/50 (100%)</td>
<td>Piperacillin/ tazobactam</td>
<td>Extended, 4.5 g every 6 h</td>
<td>Yes; 3 (3%) vs 1 (2%)</td>
<td></td>
</tr>
<tr>
<td>Cotrina-Luque (2016) (a)</td>
<td>Spain, hospital</td>
<td>Imminent death, mechanical ventilation, CC <20 mL/min, septic shock</td>
<td>Yes</td>
<td>List of random numbers, inadequate</td>
<td>1, inadequate 78</td>
<td>64 ± 13 ± 17 ± 3 N, NR</td>
<td>Lung, intra-abdominal, skin and soft tissue, UTI, bacteraemia, others, unknown</td>
<td>25/78 (32%)</td>
<td>Piperacillin/ tazobactam</td>
<td>Continuous LD 2.5 g, 9 g/24 h</td>
<td>Yes; NR</td>
<td></td>
</tr>
<tr>
<td>Abdul-Aziz (2016) (a)</td>
<td>2012–14; Australia, New Zealand, Hong Kong, ICU</td>
<td>Palliative or supportive treatment, imminent death</td>
<td>Yes</td>
<td>Sealed envelope, adequate</td>
<td>1, inadequate 443</td>
<td>64 (54–72) vs 65 (53–72),* 21 (17–26) vs 20 (15–25)*</td>
<td>Lung, intra-abdominal, skin and soft tissue, UTI, bacteraemia, others, unknown</td>
<td>82/432 (19%)</td>
<td>Meopenem, piperacillin/ tazobactam, tetracycline/ clavulanate</td>
<td>Continuous LD 3 g/24 h, 13.5 g/24 h, 12.4 g/24 h</td>
<td>Yes; NR</td>
<td></td>
</tr>
<tr>
<td>Lips (2014) (a)</td>
<td>Czech Republic, ICU</td>
<td>Neutropenia, creatinine >280 μmol/L, renal replacement therapy, obesity, pregnancy</td>
<td>No (open)</td>
<td>Block randomisation, adequate</td>
<td>22</td>
<td>63 ± 21 ± 57 ± 16, 29 ± 9 ± 26 ± 6, 100 ± 9 ± 81 ± 9 vs 84 ± 9 ± 9</td>
<td>Hospital-acquired pneumonia</td>
<td>NR</td>
<td>Imipenem</td>
<td>3 h extended LD 1 g, 0.5 g every 8 h</td>
<td>Yes; 7 (18%) vs 8 (15%)</td>
<td></td>
</tr>
<tr>
<td>Wang (2014) (a)</td>
<td>China, ICU</td>
<td>Continuous renal replacement therapy, obesity, pregnancy, comorbid severe infection, renal insufficiency</td>
<td>No (open)</td>
<td>Random number table, adequate</td>
<td>100</td>
<td>63 ± 15 ± 3 ± 57 ± 2 ± 195, 20 ± 7 ± 4 ± 19 ± 2 ± 0, NR</td>
<td>Hospital-acquired pneumonia</td>
<td>62/78 (80%)</td>
<td>Meopenem</td>
<td>3 h extended LD 250 mg, 1 g every 8 h</td>
<td>Yes; 3 (25%) vs 4 (30%)</td>
<td></td>
</tr>
<tr>
<td>Abdul-Aziz (2012) (a)</td>
<td>April, 2010–November, 2011; Australia, Hong Kong, ICU</td>
<td>Continuous renal replacement therapy</td>
<td>Yes</td>
<td>Sealed envelope, adequate</td>
<td>60</td>
<td>54 ± 19 ± 60 ± 19, 21 ± 8 ± 6 vs 25 ± 7 ± 4, NR</td>
<td>Lung, intra-abdominal, skin and soft tissue, UTI, bacteraemia, CNS, unknown</td>
<td>33/60 (55%)</td>
<td>Meopenem, piperacillin/ tazobactam, ticarcillin/ clavulanate</td>
<td>Continuous, clinician-chosen Bolus, clinician-chosen</td>
<td>Yes; 48% vs 61%</td>
<td></td>
</tr>
<tr>
<td>Chytra (2012) (a)</td>
<td>September, 2007–May, 2010, Czech Republic, ICU</td>
<td>GFR >30 mL/h, immunodeficiency, immunosuppressive medication, neutropenia</td>
<td>No (open)</td>
<td>Sealed, opaque envelope, adequate</td>
<td>240</td>
<td>44 ± 9 ± 17 ± 8 vs 47 ± 2 ± 16 ± 3, 21 ± 4 ± 7 ± 9 vs 22 ± 1 ± 8 ± 7, 72 ± 46 ± 10 ± 3 vs 71 ± 52 ± 9,*</td>
<td>Lung, intra-abdominal, skin and soft tissue, UTI, bacteraemia, others, unknown</td>
<td>198/240 (83%)</td>
<td>Meopenem</td>
<td>Continuous LD 2 g, 4 g every 24 h</td>
<td>Yes; 58% vs 61%</td>
<td></td>
</tr>
</tbody>
</table>

* NR: Not reported.

(Table 1 continues on next page)
<table>
<thead>
<tr>
<th>Study period; countries; setting</th>
<th>Exclusion criteria</th>
<th>n/N (%) documented infections</th>
<th>Antibiotic Treatment</th>
<th>Additional antibiotics allowed; n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roberts; NR; Australia; ICU (2010)*</td>
<td>Community-acquired pneumonia</td>
<td>20 (40–80)</td>
<td>Piperacillin/tazobactam (60 mg/kg/6 h)</td>
<td>No, 1:1, inadequate sealing</td>
</tr>
<tr>
<td>Okimoto (2009)</td>
<td>Renal insufficiency</td>
<td>NR</td>
<td>NR</td>
<td>No (open)</td>
</tr>
<tr>
<td>Wang (2008)</td>
<td>Pregnancy, dialysis, CrCl <40 mL/min, neutropenia, immunosuppression, multiorgan failure, irreversible shock</td>
<td>262</td>
<td>50·4 ± 16·6</td>
<td>Yes; all patients</td>
</tr>
<tr>
<td>Sakka (2007)</td>
<td>Pregnancy, dialysis, CrCl <40 mL/min, neutropenia, immunosuppression, multiorgan failure, irreversible shock</td>
<td>NR</td>
<td>NR</td>
<td>Yes; all patients</td>
</tr>
<tr>
<td>Lau (2006)</td>
<td>Late-onset hospital-acquired pneumonia, severe community infections, epilepsy</td>
<td>NR</td>
<td>NR</td>
<td>Yes; all patients</td>
</tr>
<tr>
<td>Cousson (2005)</td>
<td>Pregnancy, dialysis, CrCl <40 mL/min, neutropenia, immunosuppression, multiorgan failure, irreversible shock</td>
<td>NR</td>
<td>NR</td>
<td>Yes; all patients</td>
</tr>
<tr>
<td>Georges (2005)</td>
<td>Pregnancy, dialysis, CrCl <40 mL/min, neutropenia, immunosuppression, multiorgan failure, irreversible shock</td>
<td>NR</td>
<td>NR</td>
<td>Yes; all patients</td>
</tr>
<tr>
<td>Lubasch (2003)</td>
<td>Pregnancy, dialysis, CrCl <40 mL/min, neutropenia, immunosuppression, multiorgan failure, irreversible shock</td>
<td>NR</td>
<td>NR</td>
<td>Yes; all patients</td>
</tr>
</tbody>
</table>

Continued from previous page.
The mean or median age of enrolled patients was younger than 45 years in five RCTs (two RCTs in one of the compared groups), 45–65 years in 12 RCTs, older than 65 years in one RCT, and four did not provide relevant data. Most (11) included severely ill patients (mean or median APACHE II ≥20) in at least one of the compared groups (eight RCTs had severely ill patients in both groups), five RCTs enrolled less severely ill patients (APACHE II <20), and in six RCTs the APACHE II score was not reported (Simplified Acute Physiology Score [SAPS] was reported in one RCT). Patients in intensive care units (ICU) only were enrolled in 15 RCTs. When reported, nosocomial lung infections were the most common or the only reason for enrolment. Gram-negative bacteria were the predominant isolates; the frequency of Enterobacteriaceae and non-fermenting Gram-negative bacteria varied between studies. In most of the studies, the cause of sepsis was not documented in a large (up to 81%) proportion of patients. The total daily dose of antibiotics varied both within and between the individual studies (Table I). In 13 of 22 RCTs, patients in the prolonged group received 50–67% of the dose received by those in the short-term group. When reported, the duration of treatment was also variable.

17 studies (1597 patients) provided data for mortality at different endpoints (four reported 30-day mortality, three reported in-hospital mortality, five reported ICU mortality, and 12 RCTs did not specify when death occurred). Overall, prolonged infusion of antipseudomonal β-lactams was associated with lower all-cause mortality than short-term infusion (RR 0.70, 95% CI 0.56–0.87, figure 2). Heterogeneity was not observed (p=0.93, I²=0%). The funnel plot (appendix p 2) and Egger’s test (p=0.44) showed no evidence of publication bias.

Almost all subgroup and sensitivity analyses showed that prolonged infusion was associated with at least a trend towards lower all-cause mortality than short-term infusion (table 2) when an adequate number of studies or patients was available. Analyses that included studies with open labelling, adequate and inadequate generation of random numbers, adequate and inadequate concealment of allocation, continuous infusion, administered antibiotic (figure 3), pharmacokinetics and clinical scope, mean or median age 45 years or older, APACHE II score of more than 20, ITT and per-protocol population analysis, recommended or different dose in the two arms and loading dose showed significant reduction in mortality. Data were not available for subgroup analyses according to specific pathogens or sites of infection, concomitant antibiotic therapy and renal failure or renal replacement therapy (at baseline or during the course of the infection).

Clinical cure or improvement was reported in 18 RCTs (appendix p 3). In both the ITT (11 RCTs, 1219 patients, RR 1.06, 95% CI 0.96–1.17, P=0.39) and per-protocol (ten RCTs, 1091 patients, 1·13, 1·00–1·28, P=0·06, 57%)
The areas of squares are proportional to the weight given to each study. Risk ratios are the centres of each square.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Risk ratio (95% CI)</th>
<th>Risk ratio (95% CI)</th>
<th>Risk ratio (95% CI)</th>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>Abdul-Aziz (2016)</td>
<td>18</td>
<td>26</td>
<td>70</td>
<td>18.5%</td>
</tr>
<tr>
<td>Angus (2000)</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Bao (2016)</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Chytry (2012)</td>
<td>21</td>
<td>120</td>
<td>28</td>
<td>120</td>
</tr>
<tr>
<td>Cotrima-Jaque (2016)</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>Coisson (2005)</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Dulhunty (2013)</td>
<td>2</td>
<td>30</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Dulhunty (2015)</td>
<td>39</td>
<td>212</td>
<td>52</td>
<td>220</td>
</tr>
<tr>
<td>Georges (2005)</td>
<td>3</td>
<td>26</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Lagast (1983)</td>
<td>5</td>
<td>20</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Lau (2006)</td>
<td>1</td>
<td>130</td>
<td>3</td>
<td>132</td>
</tr>
<tr>
<td>Lips (2014)</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Rafati (2006)</td>
<td>5</td>
<td>20</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Roberts (2010)</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Sakka (2007)</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Wang (2009)</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Wang (2014)</td>
<td>7</td>
<td>38</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>792</td>
<td>805</td>
<td>100.0%</td>
<td>0.70 (0.56–0.87)</td>
</tr>
</tbody>
</table>

Heterogeneity: τ²=0%, I²=0%.

Test for overall effect: Z=3.25 (p=0.001)

(A) Random sequence generation (selection bias) (B) Allocation concealment (selection bias) (C) Blinding of participants and personnel (performance bias) (D) Incomplete outcome data (attrition bias) (E) Selective reporting (reporting bias)

Figure 2: Forest plot of mortality among patients treated with prolonged versus short-term infusion of antipseudomonal antibiotics

The areas of squares are proportional to the weight given to each study. Risk ratios are the centres of each square. df=degrees of freedom.

Discussion

The risk of death in patients with sepsis treated with prolonged infusion of antipseudomonal β-lactams was 30% lower compared with patients treated with short-term infusion. Although some subgroup or sensitivity analyses did not show a significant reduction in mortality, an insufficient number of patients or studies was included in most of these analyses. Clinical cure was not significantly higher with prolonged infusions. We should acknowledge that fewer RCTs provided data on clinical cure than mortality. Furthermore, clinical cure is a more subjective outcome. Data regarding microbiological eradication were also missing, further contributing to the subjective interpretation of clinical cure. The timing of the determination of this outcome varied between studies and this might have also contributed to the lack of statistical significance. Discrepancies between clinical cure and mortality have been reported in other meta-analyses.40–42 Data regarding adverse events and resistant strains were not studied regularly in the included RCTs.

Compared with other similar published works, this meta-analysis is not limited by the inclusion of non-randomised studies, inclusion of RCTs on concentration-dependent antibiotics or on antibiotics with narrower or different antibacterial spectrum, or inconsistency.40–42 To our knowledge, this study included the largest number of patients from geographically diverse regions. Additionally, all studied antibiotics are active against a variety of Gram-positive and Gram-negative bacteria, including Acinetobacter baumannii and Pseudomonas aeruginosa. However, the studied antibiotics are potentially not active against multidrug-resistant Gram-negative and Gram-positive bacteria. Additional studies are required to assess the potential benefit of prolonged β-lactam infusion in such cases.

The difference in effect of the prolonged infusion might have been even higher than the observed due to several factors. Such an example is the higher total dose administered in some of the studies in the short-term group. Additionally, in several RCTs piperacillin with...
tazobactam was administered in both arms at a lower daily dose (9–13·5 g) than the recommended by the American Thoracic Society or Infectious Diseases Society of America guidelines and the manufacturer (18 g) for patients with nosocomial pneumonia or neutropenic fever.50–52 In this direction, previous studies have shown that in patients with no or mild renal impairment, treatment with 16 g instead of 12 g of continuous infusion of piperacillin was more likely to achieve lung concentrations at least 16 mg/L with no or mild renal impairment, treatment with 16 g twice daily instead of 4g and 0·5 g four times daily.53–55

Although the prolonged infusion of both carbapenems and penicillins with β-lactamase inhibitors was associated with lower mortality than short-term infusion, prolonged infusion of cephalosporins was not. Another meta-analysis also showed that prolonged administration of cephalosporins did not confer additional benefit to patients compared with short-term infusion.11 This finding could be attributed to the small number of patients (n=145) and studies (five) or the more heterogeneous population groups (for example patients with melioidosis were also included in this analysis). The current recommended dose for cephalosporins might also be inadequate. For example, thecefazidime dose (administered as continuous infusion) might need to be increased to 10–12 g/24 h in patients with a glomerular filtration rate higher than 120 mL/min for the treatment of nosocomial pneumonia or neutropenic fever.14,25,26,35,36,48,49 In this direction, previous studies have shown that in patients with no or mild renal impairment, treatment with 16 g instead of 12 g of continuous infusion of piperacillin was more likely to achieve lung concentrations at least 16 mg/L with no or mild renal impairment, treatment with 16 g twice daily instead of 4g and 0·5 g four times daily.53–55

Several studies allowed for the inclusion of additional antibiotics in the empirical or definitive regimens. The effectiveness of combination regimens is an issue of debate. Meta-analyses have shown that monotherapy is equally effective as combination therapy in patients with variably severe infections.11–13 However, data favouring combination regimens in cases with multidrug-resistant bacterial infections are emerging.54–56 Additionally, in cases with infections due to bacteria with MICs at the highest within the susceptible range, in which the probability of death is higher;14–16 the addition of a second antibiotic could improve patient outcomes through synergy. In one of the included RCTs, mortality with continuous infusion was significantly lower in the subgroup of patients who did not receive additional antibiotics (19% vs 43%), but not in those who did (39% vs 36%, unpublished data, Mohd H Abdul-Aziz, personal communication).17

In cases with infections due to highly susceptible isolates, the contribution of the improved pharmacokinetics of β-lactams with prolonged administration on outcomes might not be significant because the percentage of time that the free plasma concentration of β-lactam is higher than the pathogen’s MIC is not expected to be significantly different between prolonged and short-term infusions.17 Although relevant data were not available for comparisons, clinical cure—but not mortality (unpublished data, Mohd H Abdul-Aziz,
personal communication)—was higher in one of the included RCTs in the continuous group when _A baumannii_ and _P aeruginosa_ were the causative pathogens (52% vs 25%, _p_=0·05), but not when other pathogens were implicated (44% vs 38%). Because not only non-fermenting but also several multidrug resistant Gram-negative bacteria usually have higher MICs, the effectiveness of prolonged infusion warrants further study in relevant case scenarios.

A significant proportion of studied patients had skin or intra-abdominal infections, whose outcome depends mainly on surgical debridement and not on the appropriate antibiotic regimen. Accordingly, mortality in the RCTs that enrolled mainly patients with surgical infections was generally lower than in RCTs enrolling primarily patients with lung infections. In accordance with previous analyses, patients with more severe infections seemed to benefit more from prolonged infusion. In an individual patient data meta-analysis, mortality in the continuous infusion group was marginally lower in patients with APACHE II score of less than 22 (RR 0·74, 95% CI 0·53–1·01), but not in patients with APACHE II score of 22 or higher (RR 0·67, 0·49–0·91). We should acknowledge that the lack of statistical significance could be due to the lack of power.

Table 1: Pooled Estimates of Mortality Among Patients Treated with Prolonged versus Short-term Infusion of Antipseudomonal Antibiotics According to Antibiotic Classes

<table>
<thead>
<tr>
<th>Antibiotic Class</th>
<th>Subgroup</th>
<th>Events</th>
<th>Total</th>
<th>Weight</th>
<th>Risk Ratio (95% CI)</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Forest plot of mortality among patients treated with prolonged versus short-term infusion of antipseudomonal antibiotics according to antibiotic classes. The areas of squares are proportional to the weight given to each study. Risk ratios are the centers of each square. β-lactam or β-lactamase inhibitors included piperacillin with tazobactam and ticarcillin with clavulanate (in a few cases only). df=degrees of freedom.
The outcomes of the meta-analysis cannot be safely extrapolated to patients with variable degrees of renal impairment because this was an exclusion criterion for the majority of RCTs. In patients with renal impairment, the difference between prolonged or short-term administration of antipseudomonal β-lactams might not be different when the pharmacodynamics target attainment is for the β-lactam plasma concentration at steady state to be greater than the pathogen’s MIC, regardless of the degree of renal impairment (moderate or severe) or renal replacement therapy (with or without remaining renal function). Additionally, more favourable exposure might be achieved with prolonged infusions if the pharmacodynamics target is for the β-lactam plasma concentration at steady state to be more than four times the pathogen’s MIC. Furthermore, several factors could influence the antibiotic free plasma concentrations that might affect the pharmacodynamics target attainment, including the inter-individual variation, different mode (continuous veno-venous haemofiltration or haemodiafiltration) or intensity (flow rate) in cases of renal replacement therapy or dilution placement (pre-filter or post-filter), residual renal function or progressive renal function restoration, albumin level and antibiotic binding, bacterial MIC, individual antibiotics, and antibiotic dose.

In the single published report on patients with renal impairment, there was no difference in mortality between continuous and short-term infusion in the subgroup of patients receiving renal replacement therapy (21 [38%] of 55 vs 27 [46%] of 59, RR 0·83, 95% CI 0·54–1·29). Although the authors stated that “our findings imply that patients receiving renal replacement therapy may not derive a significant benefit from continuous infusion”, the power of a hypothetical RCT with such outcomes to detect a 7·6% difference in mortality would be only 13%. Still, no difference in mortality was observed in the analysis of patients not on renal replacement therapy or dilution placement (pre-filter or post-filter), residual renal function or progressive renal function restoration, albumin level and antibiotic binding, bacterial MIC, individual antibiotics, and antibiotic dose.

The outcomes of the meta-analysis cannot be safely extrapolated to patients with variable degrees of renal impairment because this was an exclusion criterion for the majority of RCTs. In patients with renal impairment, the difference between prolonged or short-term administration of antipseudomonal β-lactams might not be different when the pharmacodynamics target attainment is for the β-lactam plasma concentration at steady state to be greater than the pathogen’s MIC, regardless of the degree of renal impairment (moderate or severe) or renal replacement therapy (with or without remaining renal function). Additionally, more favourable exposure might be achieved with prolonged infusions if the pharmacodynamics target is for the β-lactam plasma concentration at steady state to be more than four times the pathogen’s MIC. Furthermore, several factors could influence the antibiotic free plasma concentrations that might affect the pharmacodynamics target attainment, including the inter-individual variation, different mode (continuous veno-venous haemofiltration or haemodiafiltration) or intensity (flow rate) in cases of renal replacement therapy or dilution placement (pre-filter or post-filter), residual renal function or progressive renal function restoration, albumin level and antibiotic binding, bacterial MIC, individual antibiotics, and antibiotic dose.

In the single published report on patients with renal impairment, there was no difference in mortality between continuous and short-term infusion in the subgroup of patients receiving renal replacement therapy (21 [38%] of 55 vs 27 [46%] of 59, RR 0·83, 95% CI 0·54–1·29). Although the authors stated that “our findings imply that patients receiving renal replacement therapy may not derive a significant benefit from continuous infusion”, the power of a hypothetical RCT with such outcomes to detect a 7·6% difference in mortality would be only 13%. Still, no difference in mortality was observed in the analysis of patients not on renal replacement therapy (40 [16%] of 257 vs 57 [22%] of 261, 0·71, 0·49–1·03). Additionally, data regarding patients with impaired renal function not on renal replacement therapy were not provided.

Our meta-analysis has certain limitations. First, the outcomes might not apply to older patients (>65 years) because the mean age of enrolled patients was older than 65 years in only one study. However, a proportion of the enrolled patients that could not be quantified were of older age. Second, although there was no evidence of statistical heterogeneity, some clinically meaningful heterogeneity between studies is highly likely (open-label antibiotic use at variable doses, infection severity and type, and patient comorbidity). Third, several small RCTs were included and the probability of small study effects contributing to the favourable outcome for prolonged infusion should be considered. However, analyses that included smaller and larger studies did not show significant discrepancies and similar findings were observed with random and fixed effect models. In this direction, although two RCTs recruiting less than ten patients were excluded, their inclusion was not expected to alter the outcomes since the total number of patients (n=17) and reported events (one) were very small. Fourth, the criteria used in most RCTs for the definition and severity of sepsis are not in accordance to the current definitions.

We did not do analyses regarding microbiologically proven infections (according to individual or groups of bacteria) because these data were absent in the literature. Notably, continuous infusion has been associated with lower mortality in culture-negative (13·4% vs 26%, p=0·001) but not culture-positive (33·3% vs 26·8%, p=0·3) infections. The clinical significance of this finding warrants further study. Data regarding the specific site of infections also need to be generated. Additionally, duration of masking and in some studies the duration of treatment was relatively short (in five of 13 RCTs the mean or median treatment duration was 5 days or less). Although for both community and nosocomial infections short-duration treatments have been associated with similar outcomes compared with longer ones, we are not aware of studies evaluating the effect of such short treatment duration on the outcomes of patients with severe sepsis. Finally, safety assessment was difficult because of under-reporting of adverse events. Although the dose of prolonged infusion in several studies was lower than the dose for short-term infusion, the higher serum concentrations achieved for a longer period of time with prolonged infusion and the higher peak concentrations achieved with short-term infusion could have resulted in more adverse events in either group.

In conclusion, prolonged infusion of antipseudomonal β-lactams in patients with sepsis was associated with lower mortality than short-term infusion; a significant association was evident in several subgroup and sensitivity analyses. The overall quality of evidence was high. The dissociation between the significant reduction in mortality and the non-significant difference in clinical cure requires further investigation. Although the majority of RCTs included only ICU patients, prolonged infusion might benefit all hospitalised patients with sepsis; further studies in specific subgroups of patients according to age, sepsis severity, degree of renal dysfunction and immunocompetence are warranted. The contribution of therapeutic drug monitoring on the outcome of patients treated with prolonged infusion of antipseudomonal β-lactams merits further study.

Contributors

KZV and MEF conceived and designed the study. KZV and AM analysed the data. KZV, GLV, AM, GS, and MEF contributed to the final draft and revision of the manuscript.

Declarations of interest

We declare no competing interests.
Acknowledgments
We thank Mohl H Abdul-Aziz (School of Pharmacy, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia), Ivan Chytro (Department of Anaesthesiology and Intensive Care Medicine, Charles University in Prague, Prague, Czech Republic; and Faculty of Medicine, University Hospital Plzen, Plzen, Czech Republic), and Joel M Dulhunty (Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, QLD, Australia) for providing support.

References
A meta-analysis of individual patient data from randomized trials.

Siempos, II, Vardakas KZ, Manta KG, Falagas ME. Carbapenems for the treatment of immunocompetent adult patients with nosocomial pneumonia.

BMC Infect Dis 2011; 11: 181.

Vardakas KZ, Samonis G, Chrysanthopoulou SA, Blixtsotis IA, Falagas ME. Role of glycopeptides as part of initial empirical treatment of febrile neutropenic patients: a meta-analysis of randomized controlled trials.

Vardakas KZ, Tansari GS, Blixtsotis IA, Falagas ME. Beta-lactam plus aminoglycoside or fluoroquinolone combination versus beta-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis.

